Chapter 6

Electrodynamics of Spin-1/2 particles.



Spinless vs  Spin 1/2
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We basically make a substitution of the vertex factor:
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And all else in calculating [M| 2 remains the same.



Example: e’ e’ scattering

For Spinless (i.e., bosons) we showed:
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For Spin 1/2 we thus get:
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Minus sign comés from fermion exchange !!!



Spin Averaging

¥ The M from previous page includes spinors In
initial and final state.

¥ In many experimental situations, in particular in
hadron collisions, you neither fix initial nor final
state spins.

¥ We thus need to form a spin averaged
amplitude squared before we can compare
with experiment:
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Spin Averaging In non-relativistic limit

¥ Incoming €' : Reminder:
L0 | O
3. 0 _
S
u($+1/2):m |
- SD. Y1L2,3=( 0 0j=L2,3
¥ Outgoing €' : 02 1 O

U= =42m(O0 1 0 0)

%m If (,UZO)#S =S

U, ..uui — 04
& O otherwise



Invariant variables s,t u

Example: ele!" elel
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K = |ki|= [k m=m, ! =scattering angle, all in com frame.



M for Different spin combos
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M for Different spin combos

_e? [ (Uey “u,)(Upy MUB) - (Upy “U, ) (Ucy MUB)\

M =
L u
ABCD 1
i e _
ABCD 1 And alike for the other permutations.
A A -
I T

2

ABCD 1 1
1 G



Invariant variables s,t,u

¥s=(patPg)’
¥ =4 (k2+ m2) A c
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B,D are antiparticles!
pg thus “negative”, leading

to the + in (po+pg)-

K= |ki|= [kl m=m | = scattering angle, all in com frame.
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Result worthy of discussion

1. " # 1/s must be so on dimensional grounds
2. " # $2 two vertices!

3. At higher energies, Z-propagator also
contributes



More discussion

4. Calculation of e+e! " g gbar is identical
as long as sqrt(s) >> Mass of quark.

o(e’e” —qq)=3- 2620(6%' — u'u)

/ q- flavor

Charge of quark
# of flavors

Sum over quark flavors

Measurement of this cross section was very important !!!



Measurement of R

Re i3 3
O(e € %‘u‘u) q— flavor

Below charm threshold: R =3[ (2/3)%2 + (1/3)2+ (1/3)2] =2
Between charm and bottom: R = 2 + 3(4/9) = 10/3

Above bottom: R = 10/3 + 3(1/9) = 11/3

Measurement of R was crucial for:

a. Confirm that quarks have 3 colors
b. Search for additional quarks

c. Search for additional leptons
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Experimental Result
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Ever more discussion

5.d"/d%# (1 + cos?!)
5.1! is defined as the angle between e+ and
I + in com. cos?! means that the outgoing
muons have no memory of the direction of
Incoming particle vs antiparticle.

Probably as expected as the e+e! annihilate
before the ! +! | is created.

5.2 Recall, phase space is flat in cos! . cos?!
dependence thus implies that the initial state
axis matters to the outgoing particles. Why?



Helicity Conservation in relativistic limit

¥ You showed as homework that u, and ug are

helicity eigenstates Iin the relativistic limit, and
thus:

' u= (0, + T y" (U, + ug)
¥ WeOll now show that the cross terms are zero,
and helicity Is thus conserved at each vertex.

¥ We then show how angular momentum
conservation leads to the cross section we
calculated.



LetO do one cross product explicitly:
u"fu=(0_+Ug)""(u_+ug)

0 =u "= ;(1# )"0 = ;(1+ )
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Here we have used: WS _ g
n5 nS5T*

Helicity conservation holds for all
vector and axial-vector currentsas E | m. nsnS _ 1
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Conclusion on relativistic limit

¥ Dependence on scattering angle Is given
entirely by angular momentum conservation !!!

¥ This Is a generic feature for any vector or
axial-vector current.

¥ We will thus see the exact same thing also for
VV-A coupling of Electroweak interactions.

Red text on Osurvey ok~ e* " e e*, u u*O
It shows all amplitudes, crossing, forward/backward ...



Propagators oo
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Spin 1/2, e.qg. electron:



Compton Scattering: e! ! "e! |

p P

Here, ! Is the photon polarization (just like in EM-waves):
k-1(k)y=0, !.1"=—-1

For example, k" =(E,0,0,E), 15):1.(0,1, £, 0)



Compton Scattering: e! ! "e! |
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Where we neglect the electron mass, and refer to H&M
Chapter 6.14 for details.



Pair annihilation via crossing

¥ Like weOve done before:s & !t
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Dirac-trace technology

Compute spin-averaged |M|? efficiently.
By example: ey~ " e u-
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where
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idem for muons. s
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and use (twice) Z u(K)a (k)= K+ m. to get
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Standard trace formulae:

Trl = 4,

Trace of an odd number of y,’s vanishes

Tr(d¢b) = 4a - b,

Tr(dbtd) = 4l(a - b)(c-d) —(a-c)(b-d) +(a-d)(bc)]
Tr v = 0,

Tr(ysd¢b) = 0

Tr(ys¢bed) = die,,)\,ab’c'd”,
So we get (including 1/2 now to average over initial spins):

LY = 3 Tr(ky"ky”) + 3m* Tr(y*y”),
= 2(k™k” + k”k* — (k' - k — m*)g*”). 25



For muons, same story, only change momenta and mass:

L =2(pp, +pp,—(p - p— M¥)g,),

Finally contract indices in both tensors:

8e? .,
M2 = F[(k -p )k -p) +(k'-p)(k-p)
—m®p’ -p— M?k’ - k + ZmZMZ].
In the relativistic limit, masses are negligible and
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