
Chapter 6

Electrodynamics of Spin-1/2 particles.



Spinless     vs     Spin 1/2 
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We basically make a substitution of the vertex factor: 
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" uf #µui

And all else in calculating |M| 2 remains the same. 
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Example: e!  e!  scattering
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For Spinless (i.e., bosons) we showed:
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For Spin 1/2 we thus get:

Minus sign comes from fermion exchange !!!



Spin Averaging
¥ The M from previous page includes spinors in 

initial and final state.
¥ In many experimental situations, in particular in 

hadron collisions, you neither fix initial nor final 
state spins. 

¥ We thus need to form a spin averaged 
amplitude squared before we can compare 
with experiment:  
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Spin Averaging in non-relativistic limit
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¥ Outgoing e!  :
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Reminder:

Spin Averaging in non-relativistic limit 
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Reminder: 



Invariant variables s,t,u
Example: e! e! " e! e!

¥ s = ( pA + pB )2 
¥    = 4 (k2 + m2)

¥ t = ( pA - pC )2

¥    = -2 k2 (1 - cos! )

¥ u = ( pA - pD )2 

¥    = -2 k2 (1 + cos! )
 k = |ki|= |kf|        m = me      ! = scattering angle, all in com frame. 
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M for Different spin combosM for Different spin combos 
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M for Different spin combos

M = −e2 (ucγ
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And alike for the other permutations.



Invariant variables s,t,u
¥ s = ( pA + pB )2 
¥    = 4 (k2 + m2)

 

k = |ki|= |kf|        m = me      ! = scattering angle, all in com frame. 
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B,D are antiparticles!
pB thus “negative”, leading 
to the + in (pA+pB).



Result worthy of discussion
1. "  #  1/s  must be so on dimensional grounds

2. "  #  $2   two vertices!

3. At higher energies, Z-propagator also 
contributes



More discussion
4. Calculation of e+e! " q qbar is identical 

    as long as sqrt(s) >> Mass of quark.

# of flavors
Charge of quark

Sum over quark flavors

Measurement of this cross section was very important !!!



Measurement of R

Below charm threshold:  R = 3 [ (2/3)2 + (1/3)2 + (1/3)2 ] = 2 

Between charm and bottom: R = 2 + 3(4/9) = 10/3

Above bottom: R = 10/3 + 3(1/9) = 11/3

Measurement of R was crucial for:
a. Confirm that quarks have 3 colors
b. Search for additional quarks
c. Search for additional leptons



Experimental Result



Ever more discussion
5. d" /d% #  (1 + cos2! ) 
 5.1 !  is defined as the angle between e+ and 

! + in com. cos2!  means that the outgoing 
muons have no memory of the direction of 
incoming particle vs antiparticle.

 Probably as expected as the e+e! annihilate 
before the ! +! ! is created.

   5.2 Recall, phase space is flat in cos! . cos2!  
dependence thus implies that the initial state 
axis matters to the outgoing particles. Why?



Helicity Conservation in relativistic limit

¥ You showed as homework that uL and uR are 
helicity eigenstates in the relativistic limit, and 
thus:

¥ WeÕll now show that the cross terms are zero, 
and helicity is thus conserved at each vertex.

¥ We then show how angular momentum 
conservation leads to the cross section we 
calculated.



LetÕ do one cross product explicitly:

Here we have used:

Helicity conservation holds for all
vector and axial-vector currents as E ! m.
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¥ Next look at the rotation matrices:

Cross products cancel in
Spin average:
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Cross products cancel in 
Spin average: 
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M 2
" 1+ cos2#( )

dJ
1-1 

Initial Jz final  Jz 

( j = 1 because intermediate photon has spin-1)



Conclusion on relativistic limit

¥ Dependence on scattering angle is given 
entirely by angular momentum conservation !!!

¥ This is a generic feature for any vector or 
axial-vector current.

¥ We will thus see the exact same thing also for 
V−A coupling of Electroweak interactions.

Red text on Òsurvey of e− e+  " e− e+ , µ− µ+ Ó
It shows all amplitudes, crossing, forward/backward ...  
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✏µ ✏! !

p2 ! M2 =
i(! gµ! + pµp! /M2)

p2 ! M2

! igµ!
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i
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s=1 u(s) øu(s)

p2 ! m2 =
i (/p + m)

p2 ! m2

i
!

spins pol ! pol 

p2 " m2

Propagators

Photon:

Spin 1/2, e.g. electron:

Massive Vector
Bosons:

See H&M Ch.6.10ff
for more details.

i
p2 ! m2

Spinless: General:



k · ! (k) = 0, ! · ! ⇤ = �1

kµ = ( E, 0, 0, E), ! (± ) 1!
2
(0, 1, ± i, 0)

Compton Scattering: e! !  " e! !
Compton Scattering: e- gamma -> e- gamma 
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Here, ! !  is the photon polarization (just like in EM-waves):

For example, 



Compton Scattering: e! !  " e! !

Where we neglect the electron mass, and refer to H&M
Chapter 6.14 for details.

Compton Scattering: e- gamma -> e- gamma 
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Where we neglect the electron mass, and refer to H&M 
Chapter 6.14 for details. 



t = ! 2k ák! = ! 2p áp!

u = ! 2k áp! = ! 2p ák!

Pair annihilation via crossing
¥ Like weÕve done before:  s & ! t

Ignoring the electron mass.

Pair annihilation via crossing 

¥! Like we�v̀e done before:  s <-> t 
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t
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t  = -2 kk� ̀= -2 pp� ̀
u = -2 kp� ̀= -2 k�p̀  Ignoring the electron mass. 
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Dirac-trace technology
Compute spin-averaged |M|2  efficiently.
By example: e− µ−  " e− µ−

k k0
e� e�

µ�
µ�p p!

M = ! e2 øu(k!)! µ u(k)
1
q2 øu(p!)! µ u(p)

!

spins

MM ! =
"

! e2 1
q2

# 2

L µ!
e L muon

µ!

where

L µ!
e =

!

s,s !

øu(s! ) (k0)! µ u(s) (k) (øu(s! ) (k0)! ! u(s) (k))⇤

idem for muons.
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L µ!
e =

!

s,s !

øu(s! ) (k0)! µ u(s) (k) (øu(s! ) (k0)! ! u(s) (k))⇤

(øu(s0)(k0)�! u(s)(k))⇤ = (øu(s0)(k0)�! u(s)(k)) †

= øu(s)(k)�0�! †�0u(s0)(k0)

First compute CC:

Then re-arrange:
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$
�µ
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$
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and use (twice)
X

s

u(s) (k)øu(s) (k) = /k + me

L µ!
e = Tr

⇣
(/k0 + me)! µ (/k + me)! !

⌘
to get
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Standard trace formulae:

So we get (including 1/2 now to average over initial spins):
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For muons, same story, only change momenta and mass:

Finally contract indices in both tensors:

In the relativistic limit, masses are negligible and

1

4

X

spins

|M |2 = 2e4
s2 + u2

t2


