u c s b High Energy Physics

WW progress report

Dmytro Kovalskyi – UC, Santa Barbara

L.Bauerdick, I.Bloch, K.Burkett, I.Fisk, O.Gutsche – FNAL C.Campagnari, P.Kalavase, V.Krutelyov, J.Ribnik – UC, Santa Barbara F.Golf, J.Muelmenstaedt, S.Padhi, A.Yagil, F.Wurthwein – UC, San Diego

Introduction

Recent WW analysis related presentations (all based on CSA07 samples):

- DY study
- Oli's WW report
- Wjets study
- JPT study
- Top background study

 Now we are updating the analysis to new samples based on Summer/Fall 08 production.

 This presentation establishes the base line of the analysis and compares it with CSA07.

Samples, X-sections etc

Samples:

- /TTJets-madgraph/Fall08_IDEAL_V9_v2/GEN-SIM-RECO
- /WJets-madgraph/Fall08_IDEAL_V9_v1/GEN-SIM-RECO
- /ZJets-madgraph/Fall08_IDEAL_V9_reco-v2/GEN-SIM-RECO
- /WW_2I/Summer08_IDEAL_V9_v2/GEN-SIM-RECO
- /ZZ_2l2n/Summer08_IDEAL_V9_v2/GEN-SIM-RECO
- /WZ_3I/Summer08_IDEAL_V9_v2/GEN-SIM-RECO
- /SingleTop_tWChannel/Summer08_IDEAL_V9_v1/GEN-SIM-RECO
- X-section numbers are extracted from generators.
- K-factors are derived from S.Tosi collection of NxLO x-sections:
 - <u>http://www.ge.infn.it/~tosi/cms/topMC.html</u>
- CSA07 predictions at 14TeV energy are scaled down to 10TeV using numbers from G. Ceballos
 - <u>http://home.cern.ch/ceballos/xsec_14_10.pdf</u>

Integrated lumi (NxLO)								
<u>type</u>	<u>TTbar</u>	<u>W+0 jets</u>	<u>W+1jet</u>	W+2jets	<u>Z+jets</u>			
CSA07	2400/pb	200/pb	~1000/pb	~1000/pb	700/pb			
2008	2400/pb	220/pb	220/pb	220/pb	300/pb			

Event count

<u>type</u>	<u>TTbar</u>	<u>W+0 jets</u>	<u>W+1jet</u>	W+2jets	<u>Z+jets</u>
CSA07	2M	9M	8M	2.7M	2.8M
2008	1M	10M	2M	0.6M	1.3M

February 26, 2009

(x-section: 317pb, k-factor: 1.3) (x-section: 40nb, k-factor: 1.14) (x-section: 3.7nb, k-factor: 1.14) (x-section: 4.8pb, k-factor: 1.65) (x-section: 0.32pb, k-factor: 1.47) (x-section: 0.58pb, k-factor: 1.84) (x-section: 27.3pb, k-factor: 1.06)

Muon selection

- Muon selection in CSA07:
 - global muons
 - Pt > 20 GeV
 - nTrkHits > 6
 - Chi2/nDoF(global fit) < 5
 - |d0| < 0.25 cm
 - Isolation: Pt/(Pt+SumCaloEt(dR=0.3)+SumTrkPt(dR=0.3)) > 0.92
- In 2_X_Y based data samples, content of the muon collection has changed. Instead of having fairly pure sample of global muons, we now have a merged collection of tracker, stand alone and global muons, which is designed for maximal reconstruction efficiency. Careful selection of muons is required.
- Following the muon ID note (blah), we set the following muon selection requirements for muons from Ws
 - global muons
 - Pt > 20 GeV
 - nTrkHits >= 11 (definition of number of hits has changed)
 - Chi2/nDoF(global fit) < 10
 - |d0| < 0.2 cm
 - Isolation: Pt/(Pt+SumCaloEt(dR=0.3)+SumTrkPt(dR=0.3)) > 0.92
- Isolation is extracted from the muon object itself and it's identical to PAT isolation

Soft Muon selection

- In order to estimate the top background contribution after all selection cuts applied we rely on presence of soft muons from b-decays. The method itself was presented earlier.
- In CSA07 we used all global muons, which represented a fairly pure sample of muons.
- With new samples we have to find muon selection with good efficiency at low Pt and low mis-tag rate.
- Looking at muons from B-decays in TTbar: purity (P), tagging efficiency (Eff), effective tagging efficiency (Q=tag eff(1-2mistag_eff)^2):
 - All P: 64.6%, Eff: 29.8%, Q: 2.5%
 - AllGlobalMuons P: 87.3%, Eff: 27.1%, Q: 15.1%
 - TMLastStationOptimizedLowPtLoose P: 90.1%, Eff: 28.4%, Q: 18.3%
 - TMLastStationOptimizedLowPtTight P: 91.3%, Eff: 28.2%, Q: 19.2%
- Final selection:
 - Tracker muons with TMLastStationOptimizedLowPtTight ID
 - Pt > 3 GeV
 - nTrkHits >= 11
 - |d0| < 0.2 cm
- Tagging efficiency is a bit higher than what we had with CSA07 samples as expected.

Electron selection

- In CSA07 we used Egamma POG recommended tight electron ID
- For new samples a few variables used in the selector have changed
 - SigmaEtaEta is replaced with SigmaIEtaIEta
 - H/E now has zero suppression and HCAL energy extraction procedure has changed significantly
 - Given that final version of the selector is not available yet, we changed a few cuts according to recommendations of Matteo Sani - EGamma expert responsible for the selection.

Electron Isolation has changed.

- For CSA07 analysis we computed calorimeter isolation following EGamma procedure for Jurassic Algorithm using the Basic Island Clusters as input for ECAL and Calo Towers for HCAL
- Now we use official EGamma recommended isolation based on RecHits available via PAT

Electron selection II

Electron ECAL isolation: rechits(blue) vs basic clusters(red)

Plots show

- Signal: electrons with Pt>20 from WW passed robust el ID
- Background: electrons with Pt>20 from Wjets failed robust ID
- Final electron selection:
 - pixel matched gsf electron
 - Pt > 20 GeV
 - |d0| < 0.025 cm
 - Tight Electron ID (Egamma POG)
 - Isolation: Pt/(Pt+SumTrkCaloPt(dR=0.3)) > 0.92
 - muon veto (dR=0.1)

Kovalskyi

7 of 12

Jet Veto

- JPT jets corrected for track average response in the calorimeter
- CaloJet and TrkJet Veto @ 15 GeV
 - WW = 397, Top = 100
- JPT @ 25 GeV
 - WW = 405, top = 85
- JPT @ 20 GeV need tighter cuts too keep top background lower
 - WW = 361, Top = 40
- Plot is missing

CSA07 vs WW2009

CSA07 predictions at 10TeV

To scale down CSA07 estimates we used the expected drop in cross-section.

	DY ee	DY mumu	DY tautau	ttbar	Wjets	wz	ZZ	ww	тw
ee	1.4 ± 1.0	0.0 ± 0.0	0.0 ± 0.0	7.5 ± 1.2	2.8 ± 1.4	1.5 ± 0.4	1.4 ± 0.3	40.1 ± 2.0	2.9 ± 0.4
mumu	0.0 ± 0.0	7.6 ± 2.8	0.6 ± 0.6	14.3 ± 1.7	0.7 ± 0.7	2.2 ± 0.4	1.1 ± 0.3	58.0 ± 2.4	5.0 ± 0.6
emu	0.0 ± 0.0	1.5 ± 1.1	14.9 ± 3.8	30.2 ± 2.4	27.5 ± 6.3	5.1 ± 0.7	0.2 ± 0.1	225.8 ± 4.7	13.5 ± 0.9
total	1.4 ± 1.0	9.1 ± 3.0	15.5 ± 3.8	51.9 ± 3.2	31.0 ± 6.5	8.9 ± 0.9	2.7 ± 0.4	323.9 ± 5.7	21.4 ± 1.2

Reference results

PRELIMINARY

V01-02-06 samples.

	DY ee	DY mumu	DY tautau	ttbar	Wjets	wz	ZZ	ww	тw
ee	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	4.4 ± 1.4	0.0 ± 0.0	0.8 ± 0.1	1.1 ± 0.1	42.1 ± 2.7	2.7 ± 0.8
mumu	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	7.5 ± 1.8	0.0 ± 0.0	2.3 ± 0.2	1.7 ± 0.1	70.5 ± 3.5	4.0 ± 0.9
em	0.0 ± 0.0	0.0 ± 0.0	6.7 ± 4.7	20.8 ± 3.0	51.8 ± 16.4	6.3 ± 0.3	0.1 ± 0.0	257.6 ± 6.7	12.9 ± 1.6
total	0.0 ± 0.0	0.0 ± 0.0	6.7 ± 4.7	32.7 ± 3.8	51.8 ± 16.4	9.4 ± 0.3	2.9 ± 0.1	370.2 ± 8.0	19.6 ± 2.0

- Wjets background is slightly higher than expected, but statistical errors are large
- WW signal yield is up by 15%.
- Top background is lower by 35% (better jet veto)
- All other numbers are fully consistent with expectations.

New method of Wjets background estimation

- Isolation is main discriminating variable for jets induced fakes.
- Shape of the background distribution can be either extracted from QCD samples or fitted from data if enough statistics is available.
- All major sources of background have isolated leptons and their background distribution shape can be extracted from Z events from data.
- Both electron and muon contributions can be estimated with this method
- Having two different methods of background estimation, gives confidence to the results

February 26, 2009

Plans

- Currently we are finalizing background estimations.
- A few ways to improve background suppression are under investigation
- Plan to have a first draft of the note in 2 weeks
- Complete analysis update by next multi-boson meeting on March 12th.
- Go for pre-approval after that.

Conclusion

- Event selection is updated for new data samples
- Jet veto is improved by using JPT jets (calo jets correct for tracks)
- CSA07 results scaled to 10TeV are consistent with preliminary results on new samples.
- New method of W+jets background estimation based on isolation sideband extrapolation is developed.
- Analysis is actively converging and we are aiming for pre-approval in March.

Back Slides

Dmytro Kovalskyi

Event Selection UPDATE ME

Muon selection: global muons

- Pt > 20 GeV
- nTrkHits > 6
- Chi2/nDoF(global fit) < 5
- |d0| < 0.25 cm
- Isolation: Pt/(Pt+SumCaloEt(dR=0.3)+SumTrkPt(dR=0.3)) > 0.92
- Electron selection: pixel matched gsf
 - Pt > 20 GeV
 - |d0| < 0.025 cm
 - Tight Electron ID (Egamma POG)
 - Isolation: Pt/(Pt+SumTrkPt(dR=0.3)) > 0.92
 - muon veto (dR=0.1)
- Jets selection

0

- Uncorrected Et > 15 GeV
- |eta| < 3.0
- don't count jets within dR=0.4 from electrons
- MET selection
 - MET(corrected for muon) > 20 GeV
 - pMET(DYtautau suppression) > 20 GeV
- Candidate selection:
 - opposite charge electron-muon pair
- Z-veto:
 - no ee or mumu pairs in the event with mass in [76,106] GeV. One lepton can be non-isolated

February 26, 2009

Dmytro Kovalskyi