tcMET: $16X \rightarrow 22X$ transition

Frank Golf, UCSD

with

W. Andrews, D. Evans, J. Mülmenstädt, S. Padhi, F. Würthwein, A. Yagil - UCSD
J. Ribnik, P. Kalavase, D. Kovalskyi, V. Krutelyov, C. Campagnari - UCSB
I. Bloch, O. Gutsche, I. Fisk, K. Burkett, L. Bauerdick - FNAL

Outline

- Review of tcMET
- Muon Corrections
 - changed algorithms to UCSB corrections
- "Electron" Corrections
 - things still the same
- Track (pion) corrections
 - new quality cuts
- Results
 - Application to DY, WW
 - MET resolution
 - Comparison to patMET
- Current Status

tcMET - Implementation still from 16X

Implementation Details

• Identify and correct muons

- Correct at outset using standard methods
- Identify and do not correct "electron-like" objects
 - PixelMatchGsfElectron with h/e < 0.1
 - skip since nearly all energy already deposited in ECAL
- Ignore tracks with p_T outside of [2, 100] GeV
 - avoid *generating* large fake MET (quality cut on high p_T tracks)
 - for tracks with pT < 2 GeV, only add track at vertex

Muon Corrections

- Muons corrected using UCSB algorithm
 - MetMuonCorrections_cff.py
- Algorithm corrects for muons that pass:
 - nhits > 5
 - pt > 10 (global fit), $|\eta| < 2.5$
 - qoverp error < 0.5
 - global muons

• Important: use good global muons

- Allowing none global muons in final state distorts MET distribution
- Large MET in tails from global muons with high reconstructed pt
 - Check bad global fit, compare to tracker pt

Electron Corrections

• Identify and do not correct "electron-like" objects

- PixelMatchGsfElectron with h/e < 0.1
- skip since nearly all energy deposited in ECAL
- no change since 16X

- Plot to right show h/e for electrons used in CMS2
- Looks to be an implicit cut of same magnitude on h/e in constructing the collection

Track Corrections

• Ignore tracks with p_T outside of [2, 100] GeV

- avoid *generating* large fake MET (quality cut on high p_T tracks)
- for tracks with pT < 2 GeV, only add track at vertex
- unchanged from 16X
- New track quality cuts to get in line with 22X tracking
 - 16X: nhits > 5, chi2/ndof < 5, |d0| < 0.05
 - displaced beamSpot: $d0 \rightarrow d0corr$
 - 22X: nhits > 10, chi2/ndof < 4, |d0corr| < 0.1

Testing tcMET

• Background sample : Drell-Yan (Fake MET)

- /ZJets-madgraph/Fall08_IDEAL_V9_reco-v2/GEN-SIM-RECO
- 1.3M events
- Require two leptons with $p_T > 20 \text{ GeV}$
 - Require muons to be <u>global</u>

• Signal sample : WW (Real MET)

- /WW_2l/Summer08_IDEAL_V9_v2/GEN-SIM-RECO (pythia)
- 100k WW events
- Same requirements on final state leptons

"Signal" and "Background" Samples - muons

- Baseline is metMuonCorr
- WW: Remains essentially unchanged
 - increases by a couple percent for cuts at MET > 30 (50)
- Z : Decrease # events with MET > 30 (50) by <u>factor of 3.1 (3.7)</u>
 - compared to decrease by factor of 2.7(4.7) in 16X

"Signal" and "Background" Samples - electrons

Comparison between metMuonCorr and tcMET for WW \rightarrow ee

Comparison between metMuonCorr and tcMET for $Z \rightarrow ee$

- Baseline is metMuonCorr
- WW: Remains essentially unchanged
 - increases by a couple percent for cuts at MET > 30 (50)
- Z : Decrease # events with MET > 30 (50) by <u>factor of 2.9 (3.4)</u>
 - compared to decrease by factor of 2.7(3.1) in 16X

MET Resolution

- Plots above show difference between corrected MET, true MET
- In both final states, tcMET shifts mean closer to 0
- In both final states, tcMET improves resolution (decreases RMS) ~25%

MET Resolution

- Plots above show MET response (Δ MET/genMET) versus genMET
- Improvement over baseline
- Response looks good at median values of genMET
- Overcorrecting at low values of genMET, undercorrecting at high values
 - see wish list (end slide) for list of things that may address these problems

MET Direction

- Plots above show difference between corrected MET φ_{corr} , true MET φ_{true}
- Improves direction in muon final state by $\sim 20\%$
- Improves direction in electron final state by $\sim 15\%$
- In both final states, tcMET improves determination of MET direction

Comparison of tcMET and patMET

- Plots above compare metMuonCorr (baseline), pat_metCor, and tcMET
- pat_metCor is metMuonCorr+JES
- tcMET performs better than patMET in both final states
 - For cut MET > 30(50), tcMET reduces tail by factor of 2.7(2.9) in di-muon final state
 - For cut MET > 30(50), tcMET reduces tail by factor of 3.7(3.7) in di-electron final state
- patMET performs better than metMuonCorr in muon final state by factor 1.1(1.3) but performs worse in electron final state by factor of 1.3(1.1)
 - this is consistent with what we saw from JES corrections for MET in 16x

Comparison of tcMET and patMET, cont.

- Claudio ran ttbar looper with patMET (left) and tcMET (right)
- Observe significant reduction of Drell-Yan in both ee, $\mu\mu$ final states
- As announced to the group via Avi's iChat, this was a last minute addition and thus I do not know all the details that went into making these plots perhaps Claudio can comment?

Wish List

- handling of tracks with high pt (> 100), low pt (< 2)
- closer look at electron-like objects
- compare tcMET with PFMET
- derivation of new response function in 22X?
- hybrid implementations (JPT, non-ZSP RF)
- tails of tcMET distribution
- compare tracker muons and global muons
- cut on nhits as function of detector geometry

more details on twiki:

http://omega.physics.ucsb.edu/twiki/bin/view/CMS/TCMET22XValidation