< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hadroinc Top Reconstruction

Ricardo Magaña Villalba UCSB

October 2, 2012

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 めんぐ

PRELIMINARY SELECTION

- ▶ **Rho Requirement.** (0 < rhovar < 40)
- At Least Four Jets. (npfjets $30 \ge 4$)
- At Least One b-tag. ($nbtagsssv \ge 1$)
- **One muon** $p_T > 30 \ \eta < 2.1$
- ► ₿_T > 50
- Isolated Track Veto.

MC Samples:

/tas/vimartin/SingleLepton2011/output/V00-04-13/
ttsl_smallTree.root
ttdl_smallTree.root

RECONSTRUCTION

$$t\bar{t} \rightarrow Wb Wb \rightarrow \ell b jjb$$

I will call "b jets" to those that come from the b's in the decay above.

Take six jets and make all possible four jet combinations, then constraint the W mass $M_{jj} = M_{W_{PDG}}$, and finally cut on the following variables:

- "b jets" more b-tagged than W jets. (bcsvjet)
 - ► 1[00]1 Good 0[00]0 Good 0[01]0 Bad
 - ► 2[10]1 Good 0[10]2 Bad 1[02]1 Bad
- ► p_T
- ► **M**_{jj}, **M**_{jjj} W and Top Mass (before and after the constraint).
- $\Delta \mathbf{R}(\mathbf{jj})$, $\Delta \mathbf{R}(\mathbf{W}, \ell + \mathbf{b})$
- ► **M**(*l*, **b**) Invariant mass of the lepton plus one "b jets"

MASS

The red one includes a matching to the true MC.

うせん 日間 スポッスポット 御 く ロッ

ΔR

・ロト < 団 > < 団 > < 団 > < 団 > < ロ >

DISTRIBUTIONS

 $M_{\ell b}$ & p_T

The step at 30 GeV is due to the preliminary cuts.

うせん 正正 スポッスポッス セッ

EFFICIENCY

 Count all events that have at least one candidate after the selection divided by the number of events that passed the preliminary cuts.

р _т	$\mathbf{M}_{\mathbf{jj}}$	$\mathbf{M}_{\mathbf{j}\mathbf{j}\mathbf{j}}$	$\Delta \mathbf{R}_{jj}$	$\Delta \mathbf{R}_{\mathbf{W},\ell+\mathbf{b}}$	$\mathbf{M}_{\ell \mathbf{b}}$	ℓ + jets	$\ell^+\ell^-$
1	50-120	140-200	2.5	1.5	150	75%	52%
20	50-120	140-200	2.5	1.5	150	68%	42%
30	50-120	140-200	2.5	1.5	150	54%	27%

 A more powerfull discriminator can be done by combining all this variables, but we will keep it simple with just Square Cuts.

SUMMARY

Preliminary selection needs to be loosen to further optimization.

- ► Other jets that don't form the candidate are the ones that meet the b-tag or *p_T* requirement.
- ► Replace preliminary b-tag and *p*_T requirement. And include it in the combinatorics:
 - Require at least one of the b jets to be *b*-tagged.
 - Require less p_T for the jets. (At least for the W jets)
 - It could be 30 GeV for the b-jets and 25 GeV for the W jets.
- ► Probably It will require produce the babies again.
- ► With all this possible cut combinations, we need a criteria to select the working point.

MASS CONSTRAINT Starting from,

$$M_W^2 = (E_1 + E_2)^2 - (p_1 + p_2)^2$$

we will correct the magnitude of the momentum,

$$p_1^\mu \to k_1 p_1^\mu \quad p_2^\mu \to k_2 p_2^\mu$$

the W mass changes to,

$$\begin{split} M_W^2 &\to M_{W_{PDG}}^2 = (k_1 E_1 + k_2 E_2)^2 - (k_1 p_1 + k_2 p_2)^2) \\ &= k_1^2 m_1^2 + k_2^2 m_2^2 + k_1 k_2 (M_W^2 - m_1^2 - m_2^2) \end{split}$$

We can solve k_2 in terms of $m_1, m_2, M_{W_{PDG}}$ and minimize,

$$\left(\frac{k_1 p_1}{\sigma_{p_1}}\right)^2 + \left(\frac{k_2 p_2}{\sigma_{p_2}}\right)^2 = \left(\frac{k_1}{u(p_1, \eta_1)}\right)^2 + \left(\frac{k_2}{u(p_2, \eta_2)}\right)^2$$

u is the uncertainty in the Jet Energy Scale. This will find the smallest *p* correction.